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From ab Initio Calculations to Model Hamiltonians: The Effective Hamiltonian Technique
as an Efficient Tool to Describe Mixed-Valence Molecules
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The excitation spectrum of the CreatZaube molecule in slightly modified form, that is, [HCN (M& Ru

pz Ru (NHs), NCH]®", where pz= pyrazine, is calculated with wave function-based ab initio methods. An
effective matrix is built using Bloch’s procedure in a model space generated by the d orbitals of the ruthenium
atoms and the lowest* orbital of the bridging ligand. A model Hamiltonian is deduced. The effect of the
mixing of the orbitals is discussed. A large part of the spectrum (33 states) can be well described in terms of
two parameterst, the transfer integral betwee d orbital of the ruthenium and the orbital, andU, the
excitation energy from the d orbital to the* orbital. These parameters have been estimated at different
levels of correlation: the dynamical correlation mostly affddtsvhich is negative without correlation and
becomes almost zero with correlation. This article shows that a two-band Hubbard Hamiltonian is an excellent
model for describing bridged mixed-valence molecules and proposes a procedure that allows the determination
of the parameters of this model Hamiltonian by wave function-based ab initio calculations.

1. Introduction binding approximation, taking into account only the interactions
between nearest neighbors. Different techniques based on the
perturbation theory approximations to expr¥ag in terms of

the electronic parameters of the bridging ligand have been

The synthesis of the so-called Creuffaube molecufehas
been the starting point for the study of mixed-valence poly-
nuclear compounds (i.e., compounds made of two or more redox . L S9
sites existingpin differ(ent oxidaﬁon states). Whether homonuclear u_sed: the Cavdin partitioning meth_oé,tlme-lndependeﬁland .
or heteronuclear, they are good candidates for electron or energ)}!me-dependeﬁtpropagator techniques, or a nqnperturpatl\{e
transfer and can exhibit other interesting properties (e.g., in tlme-(jependent procedlure baseql on the effective I-.Iamlltonllan
nonlinear optics and magnetism, they are prototypes of moIec-teChn'qqé L‘?t us C(_)n5|der the simple case of a bridge built
ular electric wires in nanotechnology). A comprehensive review l_‘rom'm 'de“t'c‘?" units numbered from 2 tm + 1 and two
is given in ref 2. In the case of homonuclear binuclear species, identical metallic centers numbered 1 and- 2. One considers

the migrating electron can be trapped on one site, breaking the? r:nodellgarpr:ltonlam? bwtl_t In tr;(ihbass tOf thd.'gﬁ}tjﬁlmz’
symmetry of the molecule, or it can be delocalized on two sites; WI e:e i | IS I'e \(/jvave unc gn Od etS);stﬁm wi taH'e exO(I:ess
the behavior is determined by the strength of an electronic electron localized on unit One denotes the metar-ligan

parametelag compared to the relaxation energy gained by the andt‘"hthe mtrahgzr;d (E)uplllgg Par%”.‘efef-: 5{5“""“'??2']3
localization of the electronVag is the electronic coupling  m+t/Hmlxmrelandting = Gfj|Hnly;+10( = 2, m). Denoting

between the two states with one electron localized on one site,the_elxc'tat't%n er;fergty from stﬁlt@ﬁbD?r |Xm+2tEt0 stztesmHD
and it describes the ability of the excess electron to transfer(J = 1, m), the effective coupling between the end groups can

from one site to the otheNVag is measured experimentally be expressed as

through the energy or intensity of the intervalence transition, 2\[t  \m1
namely, the optical transition that couples the two former states. Vg = 2(_)( int ) (1)
For delocalized systems, the intervalence transition energy is a —U\-U

direct measure of th&/ag parameter whereas for localized or

partially localized systems it is related ¥g assuming that ~ Provided that/t/U] < 1, as was first demonstrated by Mc-
the potential curves are parabofa¥,g is one of the key Connell’® Whatever the refinement of the model, they are all

parameters determining the system’s behavior. It has beenbased on the representation of the molecule divided into subunits

studied in terms of the nature and length of the bridging ligand; and the stipulation that statgsand|ym+2lare well separated
because of the distance between the metallic centers, thein energy from the other ones. _
coupling is not direct but occurs through the ligands, either ~ This modeling of the bridged mixed-valence compounds is
through the virtual (electron transfer) or the occupied orbitals Still in use: the competition between the superexchange and
(hole transfer) of the bridging ligand. the charge-hopping or sequential mechanisms can be expressed
Models have been proposed to describe this superexchangén terms oft andU,**?and the influence of the solvent effects
mechanisnf.The system is formally divided into units: the two ~©n the bridge-mediated charge transfer can be discussed in terms
metallic units form the two end groups, and the chemical entities Of these parameters as w&lIThe vibronic analysis of these

of the bridge form the intermediate units. One works in the tight- Systems can be done in terms of a three-level system described
by these parametetéThe properties of these compounds are

*E-mail: helene.bolvin@quantix.u-strasbg.fr. well reproduced by modeling the electronic properties by a two-
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band Hubbard Hamiltoniat?. mixed-valence complex including the orbitals of the bridging
ligand in the model space. The molecular system is divided into

L Nt Moe ot three units: two metallic atoms with three active d orbitals each
He = ZGjnj,g +t Z (aj,oaj+l,o +hec)+u Z NNy and an organic aromatic bridge with an activeorbital. We

1o 1o i(Monly) focus on the methodology: how to derive the effective Hamil-

2 tonian from the ab initio calculations and how to deduce a model

o . ) Hamiltonian from the effective one. We follow here the
as first introduced by Ondrechen gtlﬁll.n eq 2,¢ is the site terminology proposed by Durand and Malriéuan effective
energy,u is the on-site repulsiort,is thed — z* resonance  pamijtonian is obtained by the projection of some exact wave
integral, andgj, (&) is the annihilation (creation) operator for  fnctions onto a finite model space, and a model Hamiltonian
one electron in the orbital of sifewith spino andn; , = a3, is parametrized, generally from experiment but in this case from
Furthermore, Ferretti et & described the nuclear degrees of ap initio calculations. The effect of the choice of the “complete”
freedom by harmonic oscillators that couple by a linear vibronic space, the model space, and the orbitals on the effective
coupling to the electronic properties. They first described mixed- parameters will be discussed; the size of the complete space
valence chains and then modeled bridged dimers; they reproducejetermines the degree of correlation included in the model
the essential features of the electroabsorption sp&cindth parameters, and this permits a simple analysis of the effect of
A = e — ev (L and M denoting ligand and metal, respectively), dynamical correlation on the physics of the phenomenon; we
the link with the previous model is obviously obtained With  shall see that the parameters are very stable with respect to the
= A — u. The discussion in terms of the two parameteasd choice of the model space but very dependent on the localized
U is usually qualitative, but there have been some attempts tocharacter of the orbitals. The efficiency of the derived model
evaluate them from experiment. Zwickel et-dbeduced them  Hamiltonian to reproduce the “exact” spectrum is analyzed, and

by comparing the charge-transfer spectra of §NRu L** and finally we discuss the premises of the models previously cited
cis- andtrans-(NHg)4Ru L3, and they found for L= pyrazine in light of these results. This article is restricted to the modeling
thatt = 6600 cnT! and U= 16 700 cnt!. Creutz et af® have of the ab initio results with few parameters and not to the
evaluated by the Hush equation in the monomer taking= analysis of the results themselves. The more physical insights
3.5 A and have deducdd from the energy of the MLCT band  of this work will be published in a separate artiéfecomparison
(metal-to-ligand charge transfer): they foune= 5700 cm* with experiment and transferability of the effective parameters
and U= 17 900 cnt'. Ferretti et aP! foundt = 5900 cnr?, to larger systems as well as the mechanism of electron transfer.
u = 37300 cm*, andA = 40 800 cm* by numerically fitting In section 2, the way in which effective and model Hamil-
the experimental absorption bands of the [@¥Ru-pz-Ru-  tonians are derived from ab initio calculations is discussed. In
(NHz)s]"* systems witm = 4 and 5 with the previous Hubbard  section 3, the methodology will be applied to the [HCN@EUH
Hamiltonian. (It follows that = 3500 cn1?.) The values of Ru-pz-Ru(NH)4NCH]>* molecule where pz pyrazine, which

are very similar, but the values &f are different because the s the well-known CreutzTaube molecule except that two
two first values deal with a mononuclear molecule and the third gmmonia ligands have been replaced by NCH ligands to obtain
one deals W|th a binuc|eal’ one. It iS the goal Of thIS Study to a h|gher Symmetry for the molecule' Th|s molecule haS been
provide more insight into the definition and the quantitative chosen because it is the prototype of electron transfer in mixed-
evaluation of these parameters, and we show that they can b&/alence complexes. Although we will not discuss in detail
calculated using the energies as well as the wave functions ofchemical insights that were obtained, we shall see that this

the first excited states. _ molecule is very interesting from a methodological point of
The effective Hamiltonian methodology gives a procedure yjew.

to project information of some exact wave function onto a

relevant reduced subspa€dt has already been used to describe 5 pMethod

the electron-transfer phenomenon as already mentioned though

the Lowdin partitioning methotlor the Bloch transformatiof: 2.1. Computational Details. All calculations have been

in these cases, the transformation was used to concentrate thgerformed using the Stuttgart energy-consistent small-core
information from a model space including the orbitals of the RECPs (relativistic effective core potentials) and their corre-
bridging ligand (generated by tHgy;J}j=1,m+2) onto a smaller sponding optimized basis sets of Stuttgart. For the ruthenium
model space restricted to the two orbitals of the metgdg)(  atoms, the 1s3s, 2p-3p, and 3d atomic orbitals are in the core,
and |ym+20) to evaluate the superexchange contribution to the leaving 16 electrons explicitly described by an 8s7p6d basis
effective couplingVag, that is, to expressg in terms of local contracted to 6s5p34.For the carbon and nitrogen atoms, the
couplings, as was done in eq 1. In this paper, we use the effectivels orbital is in the core, and the 4s4p primitives are contracted
Hamiltonian procedure upstream compared to the procedureto 2s2p?® A polarization d function (exponert 0.8) has been
used in the cited works: the idea is to build the model added to the carbons and nitrogens of the bridging pyrazine
Hamiltonian including the orbitals of the bridging ligands from molecule. Hydrogen atoms are described with the 3-21G basis
ab initio calculations of the whole molecule. Recently, the group set?®

of Malrieu has used this procedure to build the whole valence Calculations have been performed using either the MOL-
matrix in a space including the ionic configurations in some CAS-5 program systetfat the CASSCF (complete active space
magnetic binuclear complex@sand was able to evaluate self-consistent field) and CASP¥2(complete active space
effective parameters such gghe effective hopping parameter perturbation theory at the second order) levels of theory or the
between the magnetic orbitals, abdthe energy gap between DDCI2 and DDCI3 (difference dedicated configuration interac-
the covalent and ionic configurations. This technique had beention) schemes8? A level shift of 0.2 has been used in the
used previously to evaluate théss coupling either at the CASPT2 calculations. The DDCIn method is variational and
extended Hakel molecular orbital levet? in a second-order  has been implemented in the CASDI progrénit considers
perturbation theory approach, or through a limited CI (config- the space formed by all of the single and the following double
uration interaction§® In this work, it is applied to a bridged excitations out of the CAS; if; () is the space of the orbitals
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NH; NH; NH; NH; and introduces it into eq 3:
Z 1.359 Z .
2.11%, \ ., / AQW, = E W, ®8)
HCN Ru N 1140( N2 ‘Ru-—"NCH This equation is projected onto the model space (using eq 5)
2.134 ¢ : o 5
S \ L3N\ —/ $ \ PHQ|W, = E, /¥, (9)
NH; NH; NH; NH;3 and by comparison with eq 6, one obtains the key equation

Figure 1. Scheme of the [HCN(NkJsRu-pz-Ru(NH),NCHJ** (pz =
pyrazine) molecule with the geometrical parameters used in the
calculations. Distances are in A.

A" = PHQP (10)

Equations 6 and 9 concern only the model space, which explains
why HQ is sandwiched by projectofin eq 10. This equation
can be rewritten in terms of matrices. Let us define®yhe
matrix of the coefficients of ¥} i=1m and byHe" the matrix

of Hefin a given basis set of the model space. Equation 6 can
be written

that are doubly occupied (unoccupied) in the CASCI (complete
active space configuration interaction) calculation @aqny)

is the number of allowed holes (particles)$n (Ss), then the
DDCI2 (DDCI3) space contains all of the configurations
satisfyingn, + np < 2 (3). The option MONO is also used: it
considers the space of the monoexcitationss 1 and/om, <

1.

Calculations are performed on the mixed-valence molecule
[HCN(NH3)4Ru-pz-Ru(NH)4NCH 1> in the symmetrical con-
figuration. It is a derivative of the CreutZlaube molecule
where the two axial Nklgroups have been replaced by NCH
to obtain higher symmetry. The geometry is idealized from the
crystallographic data: the aromatic cycle is planar, all of the
bonds around the ruthenium are perpendicular to each other,

H*"C = SCE (11)

whereE is theM x M diagonal matrix containing the selected
eigenvalueg E}i—;m andSis the overlap matrix of the basis
set. One easily sees that the effective Hamiltonian matrix is
obtained as

H®"=SCEC' (ref 39) (12)

and the distances are summarized in Figure 1. The molecule

belongs to the B group. The intermetallic axis is theaxis,
and the pyrazine ring lies in they plane.

2.2. Effective Hamiltonians. The concept of effective

Hamiltonians was defined through the work of van Viéand
by later works, among which those of Blo&hDes Cloizeaux®

In practice, one works in an orthonormal basis set of Slater
determinants: the complete space is generatg@Ry-1n, and
the model space, Bwi}i—1m. One calculates the first roots
of the Hamiltonian at a given level of the theofW,, =
z?;lcimqsi}m,L M < L < N, with the corresponding eigen-
valuesE,, these solutions are considered to be the exact ones,

and Gkubd®’ are the most important ones. The discussion will and a model Hamiltonian is built to reproduce them. One
be restricted to the definition given by Bloch, which stipulates chooses théM roots of the exact Hamiltonian that have the
that the eigenvectors of the effective matrix are the projection |argest weight in the model space (which maximizés,C2).

of the eigenvectors of the exact matrix.

The starting point is the Scfdinger equation in the complete

For simplicity, we index these roots as the fildtones, but
they are obviously not th# first ones in energetic ordering.

space, which in practice is a space as large as possible offrom the knowledge of these roots, one builds khex M

dimensionN.

AW [=E, ¥,0 m=1,N (3)

|WOand En, are the “exact” eigenfunctions and eigenvalues.
One considers a smaller spagehe model space, of dimension

M with associated projectd®. The effective Hamiltoniaref

acts only in this model space: this restriction gives the following

equation:

R = PR*P 4)

It is such that its eigenvaluds, are M of the eigenvalues of

the exact Hamiltoniai and that its eigenvectot®¥ Care the

projections of|Wr[] the corresponding exact eigenvectors of

H:
P, [=PWw, 0 (5)
Thus, by construction
RMY =E W, 0 m=1,M (6)
One defines the wave operator by

QW 0= W0 (@)

matricesC as [Clim = Cim (i, m= 1, M) andE as [E]im = Emndim
(i, m= 1, M) and calculates the effective Hamiltonian matrix
with eq 12,Sbeing the unit matrix. With this procedure, one is
able to build a matrix of sizeM that contains the largest
conceivable amount of information concernikgof the roots
of the exact Hamiltonian. In our case, we do not have access to
the exact solutions solved as a full Cl, but the complete space
is as large as possible. Actually, the size of the complete space
is varied to get the effective parameters at different degrees of
correlation. Within this definition, the effective Hamiltonian is
not Hermitian because the projection of the exact eigenvectors
onto the model space is not orthogonal. In other words, matrix
C is not unitary. Des Cloizeaux proposed a procedure to render
the effective Hamiltonian Hermitia#f, but in the molecules
studied in this work and in the forthcoming article, nonhermi-
ticity is negligeable as is shown in section 3.2: this step is thus
not necessary in this work, contrary to the case studied by
Calzado et af?

2.3. Model Hamiltonian. The form of the model Hamiltonian
is not supposed a priori. One chooses the model space, and one
builds the effective Hamiltonian in this space. Then, a model
Hamiltonian is proposed to reproduce as well as possible the
effective Hamiltonian.

If there were no symmetry, then all of the elements of the
effective Hamiltonian would be different. In this work, the
molecule has high symmetry, which reduces the number of
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TABLE 1: Model Hamiltonian in the Model Space Spanned
by da, dg, and &*

dandsl  [dadedy|  |dardlg| dar*Tg]  [dar*clel N N
Eo —t t 0 —t I
-t Eo —t t 0
t —t  E+U+20 - -3
0 t -3 E+U+J 0
—t 0 -3 0 Eo+U+J

independent parameters of the effective Hamiltonian. However,

some matrix elements corresponding to the same physics, for

example, the transfer integral between d arfdorbitals t =

[d|h|zz* ) where h is a one-electron Hamiltonian, appear as

different numbers in the effective Hamiltonian because of d,;. dya

nonhermiticity and because the core (the orbitals that are doubly

occupied during the electron transfer) is not the same. However,

as will be shown in the next section, the matrix elements

corresponding to the same physics differ by only a few percent.

Accordingly, a model parameter is calculated as the mean value

of all of the effective matrix elements corresponding to the same

physics. The choice of the model Hamiltonian is induced from

the effective matrix: one sets equal to zero the matrix elements

that are small, and one proposes a physical explanation for the

other ones. Finally, one compares the eigenvalues and eigenFigure 2. Schematic view of the active orbitals.

vectors of the model Hamiltonian with the effective ones (which,

let us remember, are exact as far as the ab initio results arenamely, the gx, diyx, and g2-2x orbitals localized on Ru

exact) to check the validity of the modeling. (X = A, B), and 4z orbitals of pyrazine-the 2 highest
The model Hamiltoniafi, is defined by its matrix elements, — occupied,r; and,, and the 2 lowest unoccupied; and .

as exemplified in Table 1. In this work, we use the following These active orbitals are represented in Figure 2. Theahd

model parameters: dyzg are g-type orbitals overlapping with the system of the
« The metat-ligand electron-transfer integral pyrazine; they play a key role in the electron-transfer process.
. The dya and the ¢;g are d-type orbitals orthogonal to this
t = [[core]d,||HI[core}r*| = system, whereas thgzd2a and dz_2g are d-type orbitals.
(lcore]ds|[H,/[corelr*|0(13) Calculations have been performed using the full symmetry of

the molecule, namely, the groupDso the d orbitals are either

where d and ¢ are the ¢; orbitals localized on centers Aand  symmetric or antisymmetric combinations of local orbitals, but
B respectively; they are the,@rbitals overlapping with ther the results are much easier to interpret after a localization of
system of the bridging ligand. The* is the lowestz* orbital the active orbitals on each metallic center. A more refined
of the pyrazine, an¢[corel| is a Slater determinant where only  |ocalization between the metallic center and the bridge will be

orbital x is explicitly cited, the orbitals of the core being the discussed in section 3.2.

same in the bra and the ket. The excitation energies from the ground state up to 50 000
» The direct metatmetal electron-transfer integral cm1 at the state-averaged CASSCF level including eight, five,
" and two roots for the doublet, quartet, and sextet states,
= Hlcore]d, IHy|[core]ds |0 (14) respectively, are represented in Figure 3. The spectrum can be
« The metat-ligand exchange integral analyzed in terms of four energy bands.
R e The d%* band corresponds to all of the states in the
J = Hcore]dy* ||HyI[corepr*d | D= aimadady configurations: there are nine such configura-
([core]dst* | |H, || [corelr*d 5|0 (15) tions, each giving rise to two doublet states and one quartet

state. Six of these states are stabilized by interaction with the

When the ¢ and ther™ orbitals are both singly occupied, then  six states of the third band, théldand. The stabilized states
a positive value of favors the ferromagnetic alignment of these  are roughly a 2:1 mixture of thel® and d! bands. The

two electrons, and a negative value favors an antiferromagneticground state is one of these states; it belongs to the iregp B

alignment. and the %7 band is restricted to configurations with holes in
* The energy gap the dza and d.g orbitals, whereas the'tiband has a hole in
U = E(d™) — E(d*%) (16) the geradé/,(ds + dg) orbital. The intervalence state is the

lowest state of irrep B, and is composed of the same

which is the difference in energy between the manifold of configurations as the ground state but with ungerade symmetry.

configurations with one holenia d orbital, called the'd band, o The d%7 band, lying between 25 000 and 30 000 ¢&m
and the manifold of configurations with two holes in these corresponds to configurations of typ;efngdsdan again,

orbitals and one electron in the lowest orbital, called the there are 27 such states (9 configurations and 3 spin arrange-
d'%z* band. ments). This band is more compact than the previous one

3. Results and Discussion is only a negligeable coupling with the d orbitals.

3.1. CASSCF Results: Survey of the StatesThe CAS e The d* band lying between 30 000 and 35 000 Cyrthis
includes 15 electrons in 10 orbitals: 6 d orbitals of typg t  band corresponds to the states of configuratignsdy °d;”.

because the} orbital has no weight on the nitrogens, so there
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Figure 3. Energy levels in cmt of the [HCN(NH)sRu-pz-Ru(NH),NCH]>* molecule calculated at the CASSCF level. The reference of the
energies is the ground state,(Bymmetry). States are classified following their irrep, and the letter on the side denotes the spin symmetry: no
letter = doublet; Q= quartet; S= sextet. The dashed arrows represent the couplings.

TABLE 2: Model Parameters t, t', J, and U According to the Choice of Orbitals, the Model Space, and the Complete Spate

MOs 0 model space complete space t t J U

Bog 0° dar*dg CASCI 7285 551 —-911 —22670
By 4,64 dar*dg CASCI 8586 —386 0 —20888
Axg 0° dar*dg CASCI 7937 494 —614 —21810
Boyg 0° dant*lg = diys CASCI 7513 —735 —21279
Bog 0° dart*ls = de - 28 CASCI 7518 —747 —21986
Bag 0° damr*dg MONO 6805 655 —1476 —1640
Bog 464 dar*dg MONO 7016 —180 —685 —122
Boyg 0° dar*dg DDCI2 6959 600 —1517 2393
Bog 464 dar*dg DDCI2 6948 —239 —721 3924
Boyg 0 dar*ds DDCI3 6954 613 —1162 —2510
Bog 464 dar*dg DDCI3 7164 —238 —351 —946
Bag 0° dast*ds MS-CASPT2 7840 395 —1035 4477
Bog 464 damr*dg MS-CASPT2 7622 —481 —163 6215

aThe orbitals are defined with respect to the irrep with which the multistate CASSCF calculations have been performed and ¢hef angle
mixing between the d orbitals and the orbital. Energies are in cr.

The six states belonging to this band are destabilized by the
coupling with the first band; they are a 1:2 mixture of the

TABLE 3: Effective Hamiltonian Calculated from a CASCI
with Localized Orbitals of Symmetry By

d%7} and d! bands. |dadadsl  |dadsdg|  |da*ds|  |dam*dgl  |da*dal
« Finally, the states above 40 000 chtorrespond tor—m* 30575 —551 7331 —125 —7206
transitions. —551 30575 —7331 7206 125
As already mentioned, the physical discussion of this 7349 —7349 6104 912 912
trum as well as the comparison with experiment or the o7 7253 a2 6972 45
Spec P p ~7253 97 912 45 6972

dependence of the intervalence band on the bridge will be
discussed in a forthcoming articleHowever, we can already

point out the astonishing fact that, in the ground state, the hole Hamiltonian written in the same model space from Table 1 gives
is mostly localized on the bridge and not the metal centers; it the value of the parameters given in Table 2. One sees that in
will be shown in section 3.4 that the hole is more localized on thjs case there are four different values corresponding to the
the two metalic centers once the correlation is included, and in transfer integral. There are different values when the transferred
the forthcoming article, it will be shown that it is completely  electron is alpha or beta, and there are two more values because
localized on them for longer bridges such as bipyridine. The of the non-Hermiticity of the effective Hamiltonian as defined
discussion here will be restricted to the obtaining of the model by Bloch. However, the difference between the four values is
Hamiltonian, which describes only the states involving the d very small, less than 2%, compared to other effetts:defined
orbitals and thet; orbital, namely, the 27 states of théd as the mean value of these four numbers. The same procedure
band and the 6 states of thé&'dband. To shorten the notation, is used for the other parameters.
we will in the following sections denote the; orbital by 7* The first choice concerns the complete space: it is determined
and the ¢, and d.g orbitals by ¢ and @ respectively. The by the CI space and by the choice of the MOs. In a first
four other d orbitals will keep their full notation. approach, results from the CASCI are used, with the CAS
3.2. Effective Hamiltonian. All of the results of this section ~ comprising 15 electrons in 10 MOs as defined in section 3.1.
are summarized in Table 2. In each case, the effective Hamil- This is the smallest CAS including valence correlation. After-
tonian is characterized by the four parameters defined in sectionward, the complete spaces are the spaces generated by the
2.3. As an example, the effective Hamiltonian calculated at the MONO, DDCI2, and DDCI3 calculations with minimal CAS
CASCI level is given in Table 3. The comparison with the model (3 electrons in 3 orbitals). Finally, the complete space is the

aEnergies are in crt.
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of the ground state, ofA1q Symmetry have been compared.
The results are similar; the discrepancy seems to be due more
to the localization procedure than to the discrepancy in the
eigenvalues. In the following discussion, MOs?Bbg Symmetry

10000.0 7<t //—

J

a 0.0 — are used.
g v The third choice is the model space; it is defined by Slater
:>5 determinants of localized orbitals. The first one is spanned by
5 100000 the three orbitals 4} ds, andzz* limited to configurations &
¢ and d%* as in Tables 1 and 3; this model space gives model
interactions between they,dand 7* orbitals. To determine
~20000.0 / interaction involving the other d orbitals and to check the

generality of the model Hamiltonian, we have tried other model
spaces spanned by the determinajuig,ls|, |daz*lgl, |da
m*lg|, and |d,7*1g| wherelg is either ge—2g or dyge. The
effective Hamiltonian calculated in these model spaces can be
modeled only by the parameters described in section 2.3; as
expected, the interaction between the 2 or d,, orbitals and
thesr* orbital is very small. A comparison of the values of the
CAS with 15 electrons in 10 orbitals, but the exact matrix is model parameters calculated with different model spaces (Table
calculated at the MS-CASPT2 level of theory. 2) shows that the discrepancy is hundreds of raxcept for

The second choice concerns the orbitals. A common set of U, which is understable because different configurations are
orbitals is used for all roots and symmetries. The ungerade considered; a hole in agorbital is not equivalent to a hole in

-

-10.0 0.0
angle (degrees)

10.0

Figure 4. Dependence of the model parameters on the mixing of the
active orbitalsf# = 0° corresponds to the localization following Boys’
procedure.

combination of the g orbitals, the lJ/E(dA — dg) orbital,
belongs to the same irrep as thé& orbital (irrep Byg), and a

a de2-2 or a dy orbital. This shows that model parameters
calculated with a model space can be used to describe states

rotation between these orbitals affects the effective Hamiltonian NOt belonging to this model space; in other words, although the

matrix (eq 17). This rotation mixes thédand d%* bands

form of the model Hamiltonian is induced by the effective

with the dPz*2 band, and the configurations belonging to the Hamiltonian in a given mod(_al space, this model Hamiltonian
last band are not included in the model space. In other words, does not depend of the choice of the model space as long as
the configurations of the model space spanning the effective the r_nodel space i_nc;ludes the same active orbitals. This point is
Hamiltonian matrix do not form a Comp|ete active space; crucial to the Va'ldlty of the procedure. If the model space
therefore, the eigenvalues of this matrix are not invariant under includes more orbitals, then it will be necessary to add more
a rotation in the model space. But the CASCI, DDCI, or Parameters to the model Hamiltonian.

CASPT2 results are invariant under a rotation between active In conclusion to this section, the effective Hamiltonian
orbitals; thus, if the rotation is performed before the projection method described in section 2.2 applied to the [HCNgMNH
onto the model space, then eigenvalues of the effective Ru-pz-Ru(NH)s;NCH]>* molecule leads to matrices that are
Hamiltonian matrix are invariant by this operation. The three almost Hermitian and that are easily reproduced by a simple
orbitals ¢, ds, andsz* have been localized following Boys’  model Hamiltonian. This model Hamiltonian does not depend
procedure’® The parameters are quite sensitive to the mixing on the choice of model space as long as it involves the same
of the orbitals, as shown in Figure 4, where the model active orbitals, but it is strongly affected by the localization of
parameters are plotted with respectttodefined by the d andz* orbitals.

3.3. Model Hamiltonian. The previous section suggests that
the modeling of the [HCN(NB)4Ru-pz-Ru(NH)4sNCH]>" mol-
ecule by a two-parameter Hubbard-like Hamiltonian is the most
reasonable onet is the one-electron coupling between the d
ands* orbitals, andU is the difference in energy between the
d!* and d%* bands, independent of which d orbitals the hole(s)
is (are) locatedt’ andJ are quite small and depend too much
on the mixing of the orbitals to have real significance. It is
noteworthy that' andJ vanish almost at the same degree of

cosf —sin@
sinf® cos6

ul

JT

17)

(dy — dg)/V/2
J'[*

A rotation of 1° affectst andU by about 400 cm! andJ and

t' by about 200 cm?. 0 = 0° corresponds to the angle obtained
by Boys’ procedure. Canonical orbitals are obtaine@ =t10°.

t" andJ become zero fof = 2.83 and 4.6% respectively, which
are quite small angles. The localization of the orbitals almost
corresponds to the annihilation of the exchange integeaid mixing between orbital¥,(ds — dg) andz*, an angle close to

the direct metatmetal transfer integral. We point out again Boys’ localization angle. These two parameters are different in
that all of the sets of parameters of Figure 4 give the same nature, the first one being a one-electron and nonlocal term that
eigenvalues and thus have the same ability to model the systemshould vanish when there is destructive interference in the
In the following discussion, results for both= 0 and 4.64 interaction between the tails of thg dnd ¢ orbitals whereas

will be discussed, namely, the mixing obtained through Boys’ J is a two-electron and more local term because it describes
localization procedure and the one corresponding to the an-the interaction between nearest neighbors. The choice of a two-
nihilation of the zeroth-order contribution to the exchange parameter model is nonambiguous because there is only one

integral, that is,) at the CASSCF levef It has to be mentioned
that large mixing (abovet10®) gives rise to a large non-
Hermiticity of the effective Hamiltonian due to the neglect of
the dz*2 configuration in the model space.

We have also compared the influence of the symmetry of
the orbitals: two sets of MOs optimized at the CASSCF level
averaged over eight roots either’Byg Symmetry, the symmetry

set of parameters reproducing the energies, contrary to the four-
parameter model in which there are an infinite number of
parameter sets giving the same energies. With the two param-
eterst andU, one can describe the 33 states involving the d
and d%* bands because the difference in energy between the
configurations with holes in different types of d orbitals is not
important. SurprisinglyU is negative at the CASSCF level,
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the d%* band lies below the ¥ band, and the contribution of ~ between the two previously mentioned bands: it becomes almost
the d'! band to the ground state is abdly The ability of the zero at the correlated level. There are oscillations: still negative
model Hamiltonian to reproduce the exact spectrum is charac-at the MONO level, they becomes positive at the DDCI2 level,
terized by the standard deviation defined as again negative at the DDCI3 level, and finally positive at the
CASPT2 level. The respective weights of the ground state on
the d* and d%* bands are 0.30/0.45 for DDCI3 and 0.67/
(18) 0.27 for CASPT2. In the limit of full Cl, the two configurations
must be almost degenerate, and the ground state must have
_ almost equal weights of these two bands. The introduction of
N is the number of transitionsp; = E™ — E" is the dynamical correlation has little effect on the transfer integrals
difference between the energy of tii transition modeled by ~ t and t'; t is very stable from the CASCI to the DDCI3
the model Hamiltonian and calculated by the ab initio method, calculation and 1000 cm larger at the CASPT2 level, but the
andA is the mean value oh;. The standard deviation is on the  discrepancy is reasonable given the total difference in the
order of 1000 cm! at the CASSCF level, which means that methods. The effect of correlation is larger on the exchange
the main effects are taken into account and the accuracy is quiteintegralJ. At the CASSCF leveld = 4.65° corresponds to the
good for a two-parameter model describing 33 states spanningannihilation of the zeroth-order ferromagnetic contribution, the
35000 cnm™. so-called potential exchange by Anderg®he monoexcita-
The usual way to extract model parameters is to calculate tions (MONO) introduce an antiferromagnetic contribution
the parameters of the model Hamiltonian by least-squares fitting (J = —685 cnT?) that is partially compensated for by the
from the ab initio energies. In this case, by fitting the four introduction of the double excitations of the DDCI3 space
transitions generated by the model space given in Table 1(J = —351 cnt?). J calculated by the CASPT2 method is
calculated at the CASCI level with two parametéfsandt, slightly smaller § = —163 cn1?).
one obtainsy = —20761 cm* andt = 8684 cn* with a The introduction of correlation does not influence the
standard deviation of 900 cmin the description of the 33 gualitative conclusions of the last section. The description of
states. These values are very close to the ones obtained by thg'"s molecule by means of a few model parameters permits a
effective Hamiltonian method. A Ieast'squares f|tt|ng W|th fOUI’ Straightforward ana|ysis of the effect Of Corre|ation, and |t is
parameters is not really a fit because there are as many variablesioteworthy that variational method such as DDCI3 and a

as equations. The solutions of this nonlinear system are four perturbative method such as MS-CASPT2 give similar results.
sets of solutiong U, t, J, t'}: {18955,+9550, 912,—122%

and{23235,+6736,—1227, 912 (all numbelrs.are in crt). 4. Conclusions
These sets of parameters correspond to within 10dm the
results obtained with the effective Hamiltonian technique with  In this article, the effective Hamiltonian technique has been
0 equal to 9 and-1.7 respectively. The results of the least- used to propose a model Hamiltonian for a bridged mixed-
squares fittings compared to the effective Hamiltonian approach valence molecule. It is inspired by the work of Malrieu and
show that both methods give almost the same results. For theco-workers?® who used this technique on magnetic systems.
two-parameter model, there is no ambiguity, so the obtained All calculations have been performed on a benchmark molecule,
parameters are the same. For the four-parameter model, the leaswhich is a mixed-valence dimer of ruthenium that is closely
squares procedure gives four solutions out of an infinite number related to the CreutzTaube molecule, the [HCN(N$4Ru-pz-
of solutions. In conclusion, the two methods give consistent Ru(NHz)4sNCH]>" molecule, where pz pyrazine. We have
results; the least-squares fitting procedure is easier to apply butanalyzed the vertical spectrum of this molecule and have shown
provides perhaps less insight. that two bands of configurations play a crucial role in the lowest
3.4. Introduction of Dynamical Correlation. All of the part of the spectrum: theé'Hand d%* bands with respectively
results of this section are summarized in Table 2. The size of one and two holes in the d orbitals. An ab initio calculation is
the complete space has been increased to introduce the effeciirst performed, and results are projected using Bloch’s effective
of the dynamical correlation. Calculations have been performed Hamiltonian technique in a model space spanned d orbital
at the MONO, DDCI2, and DDCI3 levels using a restricted CAS localized on Ry, the lowestz* orbital of the pyrazine, and
of three electrons in three orbitatsls, dg, ands*—and MS- another d orbital localized on BuThis effective matrix is
CASPT2 with the CAS with 15 electrons in 10 MOs as modeled by parameters whose physical meaning is easy to
described before. The dynamical correlation is larger in #he d analyze. Thirty-three states of this spectrum can be well
band than in the ¥z* band because there is one more doubly reproduced with two parameterss, the energy gap between
occupied orbital in the first one, which is furthermore rather the two previous bands, amdthe transfer integral between the
atomic. Thus, contracted methods (i.e., methods in which the d. orbitals that overlap with ther system of the pyrazine and
coefficients of the zeroth-order wave function are kept fixed) the lowestz* orbital of the pyrazine. This model can be refined
such as SS-CASPT?2 (single state CASPT2) are not suitable forby the introduction of two more parameters: the exchange
this molecule. Results are obtained with the set of localized integral J between the two mentioned orbitals and the direct
orbitals of symmetry B, for 0 = 0 and 4.64 as in section 3.2; transfer integrat’ between the two metallic centers. Contrary
CASPT2 calculations were performed after a CASCI calculation to what is expected, the!¢é* band is the most stable one at
performed on a common set of orbitals, which are the same the CASSCF level, and the ground state has a weight of about
orbitals that were used for the DDCI calculations. 2/3 from this configuration. Dynamical correlation is introduced
The first conclusion is that the form of the effective by means of variational methods such as DDCI or perturbative
Hamiltonian matrix is not affected by correlation; the matrix methods such as MS-CASPT2; the same form of the model
remains quasi-Hermitian, coefficients that are negligible at the Hamiltonian is found, and the main effect of correlation is the
CASCI level remain negligible, and matrix elements corre- reduction of the energy gag, which becomes almost zero.
sponding to the same physical parameters are almost identical. The advantage of this method in calculating model parameters
The main effect of correlation is a reduction of the energy gap is that there is not any a priori assumptions of the form of the
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model Hamiltonian, and we have demonstrated that we obtain of this article is unpublished work done by Jean-Paul Malrieu
the same model Hamiltonian with several different choices of and me in 1998 on a model system. | thank Trond Saue for
model spaces. For example, for the studied molecule, onecritically reading the manuscript. Calculations have been carried
expected a model with two parametetsandU. To refine it, out either at the IDRIS (Orsay, France) through a grant of
one would add one parametér,without necessarily including  computer time from the Conseil Scientifique or at the CURRI
J. Furthermore, we have shown the crucial effect of the (Strasbourg, France).
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