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The excitation spectrum of the Creutz-Taube molecule in slightly modified form, that is, [HCN (NH3)4 Ru
pz Ru (NH3)4 NCH]5+, where pz) pyrazine, is calculated with wave function-based ab initio methods. An
effective matrix is built using Bloch’s procedure in a model space generated by the d orbitals of the ruthenium
atoms and the lowestπ* orbital of the bridging ligand. A model Hamiltonian is deduced. The effect of the
mixing of the orbitals is discussed. A large part of the spectrum (33 states) can be well described in terms of
two parameters:t, the transfer integral between a d orbital of the ruthenium and theπ* orbital, andU, the
excitation energy from the d orbital to theπ* orbital. These parameters have been estimated at different
levels of correlation: the dynamical correlation mostly affectsU, which is negative without correlation and
becomes almost zero with correlation. This article shows that a two-band Hubbard Hamiltonian is an excellent
model for describing bridged mixed-valence molecules and proposes a procedure that allows the determination
of the parameters of this model Hamiltonian by wave function-based ab initio calculations.

1. Introduction

The synthesis of the so-called Creutz-Taube molecule1 has
been the starting point for the study of mixed-valence poly-
nuclear compounds (i.e., compounds made of two or more redox
sites existing in different oxidation states). Whether homonuclear
or heteronuclear, they are good candidates for electron or energy
transfer and can exhibit other interesting properties (e.g., in
nonlinear optics and magnetism, they are prototypes of molec-
ular electric wires in nanotechnology). A comprehensive review
is given in ref 2. In the case of homonuclear binuclear species,
the migrating electron can be trapped on one site, breaking the
symmetry of the molecule, or it can be delocalized on two sites;
the behavior is determined by the strength of an electronic
parameterVAB compared to the relaxation energy gained by the
localization of the electron.VAB is the electronic coupling
between the two states with one electron localized on one site,
and it describes the ability of the excess electron to transfer
from one site to the other.VAB is measured experimentally
through the energy or intensity of the intervalence transition,
namely, the optical transition that couples the two former states.
For delocalized systems, the intervalence transition energy is a
direct measure of theVAB parameter whereas for localized or
partially localized systems it is related toVAB assuming that
the potential curves are parabolas.3 VAB is one of the key
parameters determining the system’s behavior. It has been
studied in terms of the nature and length of the bridging ligand;4

because of the distance between the metallic centers, the
coupling is not direct but occurs through the ligands, either
through the virtual (electron transfer) or the occupied orbitals
(hole transfer) of the bridging ligand.

Models have been proposed to describe this superexchange
mechanism.5 The system is formally divided into units: the two
metallic units form the two end groups, and the chemical entities
of the bridge form the intermediate units. One works in the tight-

binding approximation, taking into account only the interactions
between nearest neighbors. Different techniques based on the
perturbation theory approximations to expressVAB in terms of
the electronic parameters of the bridging ligand have been
used: the Lo¨wdin partitioning method,6 time-independent7 and
time-dependent8 propagator techniques, or a nonperturbative
time-dependent procedure based on the effective Hamiltonian
technique.9 Let us consider the simple case of a bridge built
from m identical units numbered from 2 tom + 1 and two
identical metallic centers numbered 1 andm+ 2. One considers
a model HamiltonianĤm built in the basis of the{|øj}j)1,m+2,
where|øj〉 is the wave function of the system with the excess
electron localized on unitj. One denotest the metal-ligand
and tint the intraligand coupling parameters:t ) 〈ø1|Ĥm|ø2〉 )
〈øm+1|Ĥm|øm+2〉, andtint ) 〈øj|Ĥm|øj+1〉 (j ) 2, m). DenotingU
the excitation energy from states|ø1〉 or |øm+2〉 to states|øj+1〉
(j ) 1, m), the effective coupling between the end groups can
be expressed as

provided that|t/U| , 1, as was first demonstrated by Mc-
Connell.10 Whatever the refinement of the model, they are all
based on the representation of the molecule divided into subunits
and the stipulation that states|ø1〉 and|øm+2〉 are well separated
in energy from the other ones.

This modeling of the bridged mixed-valence compounds is
still in use: the competition between the superexchange and
the charge-hopping or sequential mechanisms can be expressed
in terms oft andU,11,12and the influence of the solvent effects
on the bridge-mediated charge transfer can be discussed in terms
of these parameters as well.13 The vibronic analysis of these
systems can be done in terms of a three-level system described
by these parameters.14 The properties of these compounds are
well reproduced by modeling the electronic properties by a two-* E-mail: helene.bolvin@quantix.u-strasbg.fr.
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band Hubbard Hamiltonian:15

as first introduced by Ondrechen et al.16 In eq 2,εj is the site
energy,u is the on-site repulsion,t is the d - π* resonance
integral, andajσ (ajσ

+) is the annihilation (creation) operator for
one electron in the orbital of sitej with spinσ andnj,σ ) ajσ

+ajσ.
Furthermore, Ferretti et al.17 described the nuclear degrees of
freedom by harmonic oscillators that couple by a linear vibronic
coupling to the electronic properties. They first described mixed-
valence chains and then modeled bridged dimers; they reproduce
the essential features of the electroabsorption spectra.18 With
∆ ) εL - εM (L and M denoting ligand and metal, respectively),
the link with the previous model is obviously obtained withU
) ∆ - u. The discussion in terms of the two parameterst and
U is usually qualitative, but there have been some attempts to
evaluate them from experiment. Zwickel et al.19 deduced them
by comparing the charge-transfer spectra of (NH3)5Ru L2+ and
cis- andtrans-(NH3)4Ru L2

2+, and they found for L) pyrazine
that t ) 6600 cm-1 and U) 16 700 cm-1. Creutz et al.20 have
evaluatedt by the Hush equation in the monomer takingrab )
3.5 Å and have deducedU from the energy of the MLCT band
(metal-to-ligand charge transfer): they foundt ) 5700 cm-1

and U) 17 900 cm-1. Ferretti et al.21 found t ) 5900 cm-1,
u ) 37300 cm-1, and∆ ) 40 800 cm-1 by numerically fitting
the experimental absorption bands of the [(NH3)5Ru-pz-Ru-
(NH3)5]n+ systems withn ) 4 and 5 with the previous Hubbard
Hamiltonian. (It follows thatU ) 3500 cm-1.) The values oft
are very similar, but the values ofU are different because the
two first values deal with a mononuclear molecule and the third
one deals with a binuclear one. It is the goal of this study to
provide more insight into the definition and the quantitative
evaluation of these parameters, and we show that they can be
calculated using the energies as well as the wave functions of
the first excited states.

The effective Hamiltonian methodology gives a procedure
to project information of some exact wave function onto a
relevant reduced subspace.22 It has already been used to describe
the electron-transfer phenomenon as already mentioned though
the Löwdin partitioning method6 or the Bloch transformation:9

in these cases, the transformation was used to concentrate the
information from a model space including the orbitals of the
bridging ligand (generated by the{|øj〉}j)1,m+2) onto a smaller
model space restricted to the two orbitals of the metals (|ø1〉
and |øm+2〉) to evaluate the superexchange contribution to the
effective couplingVAB, that is, to expressVAB in terms of local
couplings, as was done in eq 1. In this paper, we use the effective
Hamiltonian procedure upstream compared to the procedure
used in the cited works: the idea is to build the model
Hamiltonian including the orbitals of the bridging ligands from
ab initio calculations of the whole molecule. Recently, the group
of Malrieu has used this procedure to build the whole valence
matrix in a space including the ionic configurations in some
magnetic binuclear complexes23 and was able to evaluate
effective parameters such ast, the effective hopping parameter
between the magnetic orbitals, andU, the energy gap between
the covalent and ionic configurations. This technique had been
used previously to evaluate theVAB coupling either at the
extended Hu¨ckel molecular orbital level,24 in a second-order
perturbation theory approach, or through a limited CI (config-
uration interaction).25 In this work, it is applied to a bridged

mixed-valence complex including the orbitals of the bridging
ligand in the model space. The molecular system is divided into
three units: two metallic atoms with three active d orbitals each
and an organic aromatic bridge with an activeπ* orbital. We
focus on the methodology: how to derive the effective Hamil-
tonian from the ab initio calculations and how to deduce a model
Hamiltonian from the effective one. We follow here the
terminology proposed by Durand and Malrieu:22 an effective
Hamiltonian is obtained by the projection of some exact wave
functions onto a finite model space, and a model Hamiltonian
is parametrized, generally from experiment but in this case from
ab initio calculations. The effect of the choice of the “complete”
space, the model space, and the orbitals on the effective
parameters will be discussed; the size of the complete space
determines the degree of correlation included in the model
parameters, and this permits a simple analysis of the effect of
dynamical correlation on the physics of the phenomenon; we
shall see that the parameters are very stable with respect to the
choice of the model space but very dependent on the localized
character of the orbitals. The efficiency of the derived model
Hamiltonian to reproduce the “exact” spectrum is analyzed, and
finally we discuss the premises of the models previously cited
in light of these results. This article is restricted to the modeling
of the ab initio results with few parameters and not to the
analysis of the results themselves. The more physical insights
of this work will be published in a separate article:26 comparison
with experiment and transferability of the effective parameters
to larger systems as well as the mechanism of electron transfer.

In section 2, the way in which effective and model Hamil-
tonians are derived from ab initio calculations is discussed. In
section 3, the methodology will be applied to the [HCN(NH3)4-
Ru-pz-Ru(NH3)4NCH]5+ molecule where pz) pyrazine, which
is the well-known Creutz-Taube molecule except that two
ammonia ligands have been replaced by NCH ligands to obtain
a higher symmetry for the molecule. This molecule has been
chosen because it is the prototype of electron transfer in mixed-
valence complexes. Although we will not discuss in detail
chemical insights that were obtained, we shall see that this
molecule is very interesting from a methodological point of
view.

2. Method

2.1. Computational Details. All calculations have been
performed using the Stuttgart energy-consistent small-core
RECPs (relativistic effective core potentials) and their corre-
sponding optimized basis sets of Stuttgart. For the ruthenium
atoms, the 1s-3s, 2p-3p, and 3d atomic orbitals are in the core,
leaving 16 electrons explicitly described by an 8s7p6d basis
contracted to 6s5p3d.27 For the carbon and nitrogen atoms, the
1s orbital is in the core, and the 4s4p primitives are contracted
to 2s2p.28 A polarization d function (exponent) 0.8) has been
added to the carbons and nitrogens of the bridging pyrazine
molecule. Hydrogen atoms are described with the 3-21G basis
set.29

Calculations have been performed using either the MOL-
CAS-5 program system30 at the CASSCF (complete active space
self-consistent field) and CASPT231 (complete active space
perturbation theory at the second order) levels of theory or the
DDCI2 and DDCI3 (difference dedicated configuration interac-
tion) schemes.32 A level shift of 0.2 has been used in the
CASPT2 calculations. The DDCIn method is variational and
has been implemented in the CASDI program.33 It considers
the space formed by all of the single and the following double
excitations out of the CAS; ifS1 (S3) is the space of the orbitals

Ĥel ) ∑
j,σ

Nsite

εjnj,σ + t ∑
j,σ

Nsite- 1

(aj,σ
+ aj+1,σ + h.c.) + u ∑

j(M only)

nj,v nj,V

(2)
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that are doubly occupied (unoccupied) in the CASCI (complete
active space configuration interaction) calculation andnh (np)
is the number of allowed holes (particles) inS1 (S3), then the
DDCI2 (DDCI3) space contains all of the configurations
satisfyingnh + np e 2 (3). The option MONO is also used: it
considers the space of the monoexcitations,nh e 1 and/ornp e
1.

Calculations are performed on the mixed-valence molecule
[HCN(NH3)4Ru-pz-Ru(NH3)4NCH ]5+ in the symmetrical con-
figuration. It is a derivative of the Creutz-Taube molecule
where the two axial NH3 groups have been replaced by NCH
to obtain higher symmetry. The geometry is idealized from the
crystallographic data: the aromatic cycle is planar, all of the
bonds around the ruthenium are perpendicular to each other,
and the distances are summarized in Figure 1. The molecule
belongs to the D2h group. The intermetallic axis is thex axis,
and the pyrazine ring lies in thexy plane.

2.2. Effective Hamiltonians. The concept of effective
Hamiltonians was defined through the work of van Vleck34 and
by later works, among which those of Bloch,35 Des Cloizeaux,36

and Ôkubo37 are the most important ones. The discussion will
be restricted to the definition given by Bloch, which stipulates
that the eigenvectors of the effective matrix are the projection
of the eigenvectors of the exact matrix.

The starting point is the Schro¨dinger equation in the complete
space, which in practice is a space as large as possible of
dimensionN.

|Ψm〉 and Em are the “exact” eigenfunctions and eigenvalues.
One considers a smaller spaceS, the model space, of dimension
M with associated projectorP. The effective HamiltonianĤeff

acts only in this model space: this restriction gives the following
equation:

It is such that its eigenvaluesEm areM of the eigenvalues of
the exact HamiltonianĤ and that its eigenvectors|Ψ̃m〉 are the
projections of|Ψm〉, the corresponding exact eigenvectors of
Ĥ:

Thus, by construction

One defines the wave operator by

and introduces it into eq 3:

This equation is projected onto the model space (using eq 5)

and by comparison with eq 6, one obtains the key equation

Equations 6 and 9 concern only the model space, which explains
why ĤΩ is sandwiched by projectorsP in eq 10. This equation
can be rewritten in terms of matrices. Let us define byC the
matrix of the coefficients of{|Ψ̃m〉}i)1,M and byHeff the matrix
of Ĥeff in a given basis set of the model space. Equation 6 can
be written

whereE is theM × M diagonal matrix containing the selected
eigenvalues{Ei}i)1,M andS is the overlap matrix of the basis
set. One easily sees that the effective Hamiltonian matrix is
obtained as

In practice, one works in an orthonormal basis set of Slater
determinants: the complete space is generated by{φi}i)1,N, and
the model space, by{φi}i)1,M. One calculates theL first roots
of the Hamiltonian at a given level of the theory{Ψm )
∑i)1

N Cimφi}m)1,L M e L e N, with the corresponding eigen-
valuesEm; these solutions are considered to be the exact ones,
and a model Hamiltonian is built to reproduce them. One
chooses theM roots of the exact Hamiltonian that have the
largest weight in the model space (which maximizes∑i)1

M Cim
2 ).

For simplicity, we index these roots as the firstM ones, but
they are obviously not theM first ones in energetic ordering.
From the knowledge of these roots, one builds theM × M
matricesC as [C] im ) Cim (i, m ) 1, M) andE as [E] im ) Emδim

(i, m ) 1, M) and calculates the effective Hamiltonian matrix
with eq 12,Sbeing the unit matrix. With this procedure, one is
able to build a matrix of sizeM that contains the largest
conceivable amount of information concerningM of the roots
of the exact Hamiltonian. In our case, we do not have access to
the exact solutions solved as a full CI, but the complete space
is as large as possible. Actually, the size of the complete space
is varied to get the effective parameters at different degrees of
correlation. Within this definition, the effective Hamiltonian is
not Hermitian because the projection of the exact eigenvectors
onto the model space is not orthogonal. In other words, matrix
C is not unitary. Des Cloizeaux proposed a procedure to render
the effective Hamiltonian Hermitian,36 but in the molecules
studied in this work and in the forthcoming article, nonhermi-
ticity is negligeable as is shown in section 3.2: this step is thus
not necessary in this work, contrary to the case studied by
Calzado et al.23

2.3. Model Hamiltonian.The form of the model Hamiltonian
is not supposed a priori. One chooses the model space, and one
builds the effective Hamiltonian in this space. Then, a model
Hamiltonian is proposed to reproduce as well as possible the
effective Hamiltonian.

If there were no symmetry, then all of the elements of the
effective Hamiltonian would be different. In this work, the
molecule has high symmetry, which reduces the number of

Figure 1. Scheme of the [HCN(NH3)4Ru-pz-Ru(NH3)4NCH]5+ (pz )
pyrazine) molecule with the geometrical parameters used in the
calculations. Distances are in Å.

ĤΩ|Ψ̃m〉 ) Em|Ψm〉 (8)

PĤΩ|Ψ̃m〉 ) Em|Ψ̃m〉 (9)

Ĥeff ) PĤΩP (10)

ĤeffC ) SCE (11)

Heff ) SCEC-1 (ref 39) (12)

Ĥ|Ψm〉 ) Em|Ψm〉 m ) 1, N (3)

Ĥeff ) PĤeffP (4)

|Ψ̃m〉 ) P|Ψm〉 (5)

Ĥeff|Ψ̃m〉 ) Em|Ψ̃m〉 m ) 1, M (6)

Ω|Ψ̃m〉 ) |Ψm〉 (7)
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independent parameters of the effective Hamiltonian. However,
some matrix elements corresponding to the same physics, for
example, the transfer integral between d andπ* orbitals t )
〈|d|ĥ|π* 〉, where ĥ is a one-electron Hamiltonian, appear as
different numbers in the effective Hamiltonian because of
nonhermiticity and because the core (the orbitals that are doubly
occupied during the electron transfer) is not the same. However,
as will be shown in the next section, the matrix elements
corresponding to the same physics differ by only a few percent.
Accordingly, a model parameter is calculated as the mean value
of all of the effective matrix elements corresponding to the same
physics. The choice of the model Hamiltonian is induced from
the effective matrix: one sets equal to zero the matrix elements
that are small, and one proposes a physical explanation for the
other ones. Finally, one compares the eigenvalues and eigen-
vectors of the model Hamiltonian with the effective ones (which,
let us remember, are exact as far as the ab initio results are
exact) to check the validity of the modeling.

The model HamiltonianĤm is defined by its matrix elements,
as exemplified in Table 1. In this work, we use the following
model parameters:

• The metal-ligand electron-transfer integral

where dA and dB are the dxz orbitals localized on centers A and
B respectively; they are the dπ orbitals overlapping with theπ
system of the bridging ligand. Theπ* is the lowestπ* orbital
of the pyrazine, and|[core]x| is a Slater determinant where only
orbital x is explicitly cited, the orbitals of the core being the
same in the bra and the ket.

• The direct metal-metal electron-transfer integral

• The metal-ligand exchange integral

When the dA and theπ* orbitals are both singly occupied, then
a positive value ofJ favors the ferromagnetic alignment of these
two electrons, and a negative value favors an antiferromagnetic
alignment.

• The energy gap

which is the difference in energy between the manifold of
configurations with one hole in a d orbital, called the d11 band,
and the manifold of configurations with two holes in these
orbitals and one electron in the lowestπ* orbital, called the
d10π* band.

3. Results and Discussion

3.1. CASSCF Results: Survey of the States.The CAS
includes 15 electrons in 10 orbitals: 6 d orbitals of type t2g,

namely, the dxz;X, dxy;X, and dy2-z2;X orbitals localized on RuX
(X ) A, B), and 4 π orbitals of pyrazinesthe 2 highest
occupied,π1 andπ2, and the 2 lowest unoccupied,π1

/ andπ2
/.

These active orbitals are represented in Figure 2. The dxz;A and
dxz;B are dπ-type orbitals overlapping with theπ system of the
pyrazine; they play a key role in the electron-transfer process.
The dxy;A and the dxy;B are dπ-type orbitals orthogonal to thisπ
system, whereas the dy2-z2;A and dy2-z2;B are dδ-type orbitals.
Calculations have been performed using the full symmetry of
the molecule, namely, the group D2h, so the d orbitals are either
symmetric or antisymmetric combinations of local orbitals, but
the results are much easier to interpret after a localization of
the active orbitals on each metallic center. A more refined
localization between the metallic center and the bridge will be
discussed in section 3.2.

The excitation energies from the ground state up to 50 000
cm-1 at the state-averaged CASSCF level including eight, five,
and two roots for the doublet, quartet, and sextet states,
respectively, are represented in Figure 3. The spectrum can be
analyzed in terms of four energy bands.

• The d10π1* band corresponds to all of the states in the
π1

2π2
2dA

5dB
5π1

/ configurations: there are nine such configura-
tions, each giving rise to two doublet states and one quartet
state. Six of these states are stabilized by interaction with the
six states of the third band, the d11 band. The stabilized states
are roughly a 2:1 mixture of the d10π1

/ and d11 bands. The
ground state is one of these states; it belongs to the irrep B2g,
and the d10π1

/ band is restricted to configurations with holes in
the dxz;A and dxz;B orbitals, whereas the d11 band has a hole in
the gerade1/2(dA + dB) orbital. The intervalence state is the
lowest state of irrep B1u and is composed of the same
configurations as the ground state but with ungerade symmetry.

• The d10π2
/ band, lying between 25 000 and 30 000 cm-1,

corresponds to configurations of typeπ1
2π2

2dA
5dB

5π2
/: again,

there are 27 such states (9 configurations and 3 spin arrange-
ments). This band is more compact than the previous one
because theπ2

/ orbital has no weight on the nitrogens, so there
is only a negligeable coupling with the d orbitals.

• The d11 band lying between 30 000 and 35 000 cm-1; this
band corresponds to the states of configurationπ1

2π2
2dA

5.5dB
5.5.

TABLE 1: Model Hamiltonian in the Model Space Spanned
by dA, dB, and π*

|dAdAdB| |dAdBdB| |dAπ*dB| |dAπ*dB| |dAπ*dB|
E0 -t′ t 0 -t
-t′ E0 -t t 0
t -t E0 + U + 2J -J -J
0 t -J E0 + U + J 0
-t 0 -J 0 E0 + U + J

t ) 〈|[core]dA||Ĥm||[core]π* |〉 )
〈|[core]dB||Ĥm||[core]π* |〉 (13)

t′ ) 〈|[core]dA||Ĥm||[core]dB|〉 (14)

J ) 〈|[core]dAπ* ||Ĥm||[core]π*dA|〉 )
〈|[core]dBπ* ||Ĥm||[core]π*dB|〉 (15)

U ) E(d11) - E(d10π*) (16)

Figure 2. Schematic view of the active orbitals.
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The six states belonging to this band are destabilized by the
coupling with the first band; they are a 1:2 mixture of the
d10π1

/ and d11 bands.
• Finally, the states above 40 000 cm-1 correspond toπ-π*

transitions.
As already mentioned, the physical discussion of this

spectrum as well as the comparison with experiment or the
dependence of the intervalence band on the bridge will be
discussed in a forthcoming article.26 However, we can already
point out the astonishing fact that, in the ground state, the hole
is mostly localized on the bridge and not the metal centers; it
will be shown in section 3.4 that the hole is more localized on
the two metalic centers once the correlation is included, and in
the forthcoming article, it will be shown that it is completely
localized on them for longer bridges such as bipyridine. The
discussion here will be restricted to the obtaining of the model
Hamiltonian, which describes only the states involving the d
orbitals and theπ1

/ orbital, namely, the 27 states of the d10π1
/

band and the 6 states of the d11 band. To shorten the notation,
we will in the following sections denote theπ1

/ orbital by π*
and the dxz;A and dxz;B orbitals by dA and dB respectively. The
four other d orbitals will keep their full notation.

3.2. Effective Hamiltonian.All of the results of this section
are summarized in Table 2. In each case, the effective Hamil-
tonian is characterized by the four parameters defined in section
2.3. As an example, the effective Hamiltonian calculated at the
CASCI level is given in Table 3. The comparison with the model

Hamiltonian written in the same model space from Table 1 gives
the value of the parameters given in Table 2. One sees that in
this case there are four different values corresponding to the
transfer integralt. There are different values when the transferred
electron is alpha or beta, and there are two more values because
of the non-Hermiticity of the effective Hamiltonian as defined
by Bloch. However, the difference between the four values is
very small, less than 2%, compared to other effects:t is defined
as the mean value of these four numbers. The same procedure
is used for the other parameters.

The first choice concerns the complete space: it is determined
by the CI space and by the choice of the MOs. In a first
approach, results from the CASCI are used, with the CAS
comprising 15 electrons in 10 MOs as defined in section 3.1.
This is the smallest CAS including valence correlation. After-
ward, the complete spaces are the spaces generated by the
MONO, DDCI2, and DDCI3 calculations with minimal CAS
(3 electrons in 3 orbitals). Finally, the complete space is the

Figure 3. Energy levels in cm-1 of the [HCN(NH3)4Ru-pz-Ru(NH3)4NCH]5+ molecule calculated at the CASSCF level. The reference of the
energies is the ground state (B2g symmetry). States are classified following their irrep, and the letter on the side denotes the spin symmetry: no
letter ) doublet; Q) quartet; S) sextet. The dashed arrows represent the couplings.

TABLE 2: Model Parameters t, t′, J, and U According to the Choice of Orbitals, the Model Space, and the Complete Spacea

MOs θ model space complete space t t′ J U

B2g 0° dAπ*dB CASCI 7285 551 -911 -22670
B2g 4.64° dAπ*dB CASCI 8586 -386 0 -20888
A1g 0° dAπ*dB CASCI 7937 494 -614 -21810
B2g 0° dAπ* lB ) dxy;B CASCI 7513 -735 -21279
B2g 0° dAπ* lB ) dx2 - y2;B CASCI 7518 -747 -21986
B2g 0° dAπ*dB MONO 6805 655 -1476 -1640
B2g 4.64° dAπ*dB MONO 7016 -180 -685 -122
B2g 0° dAπ*dB DDCI2 6959 600 -1517 2393
B2g 4.64° dAπ*dB DDCI2 6948 -239 -721 3924
B2g 0° dAπ*dB DDCI3 6954 613 -1162 -2510
B2g 4.64° dAπ*dB DDCI3 7164 -238 -351 -946
B2g 0° dAπ*dB MS-CASPT2 7840 395 -1035 4477
B2g 4.64° dAπ*dB MS-CASPT2 7622 -481 -163 6215

a The orbitals are defined with respect to the irrep with which the multistate CASSCF calculations have been performed and the angleθ of
mixing between the d orbitals and theπ* orbital. Energies are in cm-1.

TABLE 3: Effective Hamiltonian Calculated from a CASCI
with Localized Orbitals of Symmetry B2g

a

|dAdAdB| |dAdBdB| |dAπ*dB| |dAπ*dB| |dAπ*dB|
30 575 -551 7331 -125 -7206
-551 30 575 -7331 7206 125
7349 -7349 6104 912 912
-97 7253 912 6972 45

-7253 97 912 45 6972

a Energies are in cm-1.

Describing Mixed-Valence Molecules J. Phys. Chem. A, Vol. 107, No. 25, 20035075



CAS with 15 electrons in 10 orbitals, but the exact matrix is
calculated at the MS-CASPT2 level of theory.

The second choice concerns the orbitals. A common set of
orbitals is used for all roots and symmetries. The ungerade
combination of the dxz orbitals, the 1/x2(dA - dB) orbital,
belongs to the same irrep as theπ* orbital (irrep B2g), and a
rotation between these orbitals affects the effective Hamiltonian
matrix (eq 17). This rotation mixes the d11 and d10π* bands
with the d9π*2 band, and the configurations belonging to the
last band are not included in the model space. In other words,
the configurations of the model space spanning the effective
Hamiltonian matrix do not form a complete active space;
therefore, the eigenvalues of this matrix are not invariant under
a rotation in the model space. But the CASCI, DDCI, or
CASPT2 results are invariant under a rotation between active
orbitals; thus, if the rotation is performed before the projection
onto the model space, then eigenvalues of the effective
Hamiltonian matrix are invariant by this operation. The three
orbitals dA, dB, and π* have been localized following Boys’
procedure.38 The parameters are quite sensitive to the mixing
of the orbitals, as shown in Figure 4, where the model
parameters are plotted with respect toθ, defined by

A rotation of 1° affectst andU by about 400 cm-1 andJ and
t′ by about 200 cm-1. θ ) 0° corresponds to the angle obtained
by Boys’ procedure. Canonical orbitals are obtained atθ ) 10°.
t′ andJ become zero forθ ) 2.83 and 4.64°, respectively, which
are quite small angles. The localization of the orbitals almost
corresponds to the annihilation of the exchange integralJ and
the direct metal-metal transfer integralt′. We point out again
that all of the sets of parameters of Figure 4 give the same
eigenvalues and thus have the same ability to model the system.
In the following discussion, results for bothθ ) 0 and 4.64°
will be discussed, namely, the mixing obtained through Boys’
localization procedure and the one corresponding to the an-
nihilation of the zeroth-order contribution to the exchange
integral, that is,J at the CASSCF level.40 It has to be mentioned
that large mixing (above(10°) gives rise to a large non-
Hermiticity of the effective Hamiltonian due to the neglect of
the d9π*2 configuration in the model space.

We have also compared the influence of the symmetry of
the orbitals: two sets of MOs optimized at the CASSCF level
averaged over eight roots either in2B2g symmetry, the symmetry

of the ground state, or2A1g symmetry have been compared.
The results are similar; the discrepancy seems to be due more
to the localization procedure than to the discrepancy in the
eigenvalues. In the following discussion, MOs of2B2g symmetry
are used.

The third choice is the model space; it is defined by Slater
determinants of localized orbitals. The first one is spanned by
the three orbitals dA, dB, andπ* limited to configurations d11

and d10π* as in Tables 1 and 3; this model space gives model
interactions between the dxz and π* orbitals. To determine
interaction involving the other d orbitals and to check the
generality of the model Hamiltonian, we have tried other model
spaces spanned by the determinants|dAdAlB|, |dAπ* lB|, |dA

π* lB|, and |dAπ* lB| where lB is either dx2-y2;B or dxy;B. The
effective Hamiltonian calculated in these model spaces can be
modeled only by the parameters described in section 2.3; as
expected, the interaction between thedy2-z2 or dxy orbitals and
theπ* orbital is very small. A comparison of the values of the
model parameters calculated with different model spaces (Table
2) shows that the discrepancy is hundreds of cm-1, except for
U, which is understable because different configurations are
considered; a hole in a dxz orbital is not equivalent to a hole in
a dy2-z2 or a dxy orbital. This shows that model parameters
calculated with a model space can be used to describe states
not belonging to this model space; in other words, although the
form of the model Hamiltonian is induced by the effective
Hamiltonian in a given model space, this model Hamiltonian
does not depend of the choice of the model space as long as
the model space includes the same active orbitals. This point is
crucial to the validity of the procedure. If the model space
includes more orbitals, then it will be necessary to add more
parameters to the model Hamiltonian.

In conclusion to this section, the effective Hamiltonian
method described in section 2.2 applied to the [HCN(NH3)4-
Ru-pz-Ru(NH3)4NCH]5+ molecule leads to matrices that are
almost Hermitian and that are easily reproduced by a simple
model Hamiltonian. This model Hamiltonian does not depend
on the choice of model space as long as it involves the same
active orbitals, but it is strongly affected by the localization of
the d andπ* orbitals.

3.3. Model Hamiltonian. The previous section suggests that
the modeling of the [HCN(NH3)4Ru-pz-Ru(NH3)4NCH]5+ mol-
ecule by a two-parameter Hubbard-like Hamiltonian is the most
reasonable one:t is the one-electron coupling between the dxz

andπ* orbitals, andU is the difference in energy between the
d11 and d10π* bands, independent of which d orbitals the hole(s)
is (are) located.t′ andJ are quite small and depend too much
on the mixing of the orbitals to have real significance. It is
noteworthy thatt′ and J vanish almost at the same degree of
mixing between orbitals1/2(dA - dB) andπ*, an angle close to
Boys’ localization angle. These two parameters are different in
nature, the first one being a one-electron and nonlocal term that
should vanish when there is destructive interference in the
interaction between the tails of the dA and dB orbitals whereas
J is a two-electron and more local term because it describes
the interaction between nearest neighbors. The choice of a two-
parameter model is nonambiguous because there is only one
set of parameters reproducing the energies, contrary to the four-
parameter model in which there are an infinite number of
parameter sets giving the same energies. With the two param-
eterst andU, one can describe the 33 states involving the d11

and d10π* bands because the difference in energy between the
configurations with holes in different types of d orbitals is not
important. Surprisingly,U is negative at the CASSCF level,

Figure 4. Dependence of the model parameters on the mixing of the
active orbitals.θ ) 0° corresponds to the localization following Boys’
procedure.

[u′
π′ ]) [cosθ -sin θ

sin θ cosθ ][(dA - dB)/x2
π* ] (17)
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the d10π* band lies below the d11 band, and the contribution of
the d11 band to the ground state is about1/3. The ability of the
model Hamiltonian to reproduce the exact spectrum is charac-
terized by the standard deviation defined as

N is the number of transitions,∆i ) Ei
mod - Ei

abin is the
difference between the energy of theith transition modeled by
the model Hamiltonian and calculated by the ab initio method,
and∆h is the mean value of∆i. The standard deviation is on the
order of 1000 cm-1 at the CASSCF level, which means that
the main effects are taken into account and the accuracy is quite
good for a two-parameter model describing 33 states spanning
35 000 cm-1.

The usual way to extract model parameters is to calculate
the parameters of the model Hamiltonian by least-squares fitting
from the ab initio energies. In this case, by fitting the four
transitions generated by the model space given in Table 1
calculated at the CASCI level with two parametersU and t,
one obtainsU ) -20 761 cm-1 and t ) 8684 cm-1 with a
standard deviation of 900 cm-1 in the description of the 33
states. These values are very close to the ones obtained by the
effective Hamiltonian method. A least-squares fitting with four
parameters is not really a fit because there are as many variables
as equations. The solutions of this nonlinear system are four
sets of solutions{U, t, J, t′}: {18955,(9550, 912,-1227}
and{23235,(6736,-1227, 912} (all numbers are in cm-1).
These sets of parameters correspond to within 10 cm-1 to the
results obtained with the effective Hamiltonian technique with
θ equal to 9 and-1.7° respectively. The results of the least-
squares fittings compared to the effective Hamiltonian approach
show that both methods give almost the same results. For the
two-parameter model, there is no ambiguity, so the obtained
parameters are the same. For the four-parameter model, the least-
squares procedure gives four solutions out of an infinite number
of solutions. In conclusion, the two methods give consistent
results; the least-squares fitting procedure is easier to apply but
provides perhaps less insight.

3.4. Introduction of Dynamical Correlation. All of the
results of this section are summarized in Table 2. The size of
the complete space has been increased to introduce the effect
of the dynamical correlation. Calculations have been performed
at the MONO, DDCI2, and DDCI3 levels using a restricted CAS
of three electrons in three orbitalssdA, dB, andπ*sand MS-
CASPT2 with the CAS with 15 electrons in 10 MOs as
described before. The dynamical correlation is larger in the d11

band than in the d10π* band because there is one more doubly
occupied orbital in the first one, which is furthermore rather
atomic. Thus, contracted methods (i.e., methods in which the
coefficients of the zeroth-order wave function are kept fixed)
such as SS-CASPT2 (single state CASPT2) are not suitable for
this molecule. Results are obtained with the set of localized
orbitals of symmetry B2g for θ ) 0 and 4.64° as in section 3.2;
CASPT2 calculations were performed after a CASCI calculation
performed on a common set of orbitals, which are the same
orbitals that were used for the DDCI calculations.

The first conclusion is that the form of the effective
Hamiltonian matrix is not affected by correlation; the matrix
remains quasi-Hermitian, coefficients that are negligible at the
CASCI level remain negligible, and matrix elements corre-
sponding to the same physical parameters are almost identical.
The main effect of correlation is a reduction of the energy gap

between the two previously mentioned bands: it becomes almost
zero at the correlated level. There are oscillations: still negative
at the MONO level, they becomes positive at the DDCI2 level,
again negative at the DDCI3 level, and finally positive at the
CASPT2 level. The respective weights of the ground state on
the d11 and d10π* bands are 0.30/0.45 for DDCI3 and 0.67/
0.27 for CASPT2. In the limit of full CI, the two configurations
must be almost degenerate, and the ground state must have
almost equal weights of these two bands. The introduction of
dynamical correlation has little effect on the transfer integrals
t and t′; t is very stable from the CASCI to the DDCI3
calculation and 1000 cm-1 larger at the CASPT2 level, but the
discrepancy is reasonable given the total difference in the
methods. The effect of correlation is larger on the exchange
integralJ. At the CASSCF level,θ ) 4.65° corresponds to the
annihilation of the zeroth-order ferromagnetic contribution, the
so-called potential exchange by Anderson.40 The monoexcita-
tions (MONO) introduce an antiferromagnetic contribution
(J ) -685 cm-1) that is partially compensated for by the
introduction of the double excitations of the DDCI3 space
(J ) -351 cm-1). J calculated by the CASPT2 method is
slightly smaller (J ) -163 cm-1).

The introduction of correlation does not influence the
qualitative conclusions of the last section. The description of
this molecule by means of a few model parameters permits a
straightforward analysis of the effect of correlation, and it is
noteworthy that variational method such as DDCI3 and a
perturbative method such as MS-CASPT2 give similar results.

4. Conclusions

In this article, the effective Hamiltonian technique has been
used to propose a model Hamiltonian for a bridged mixed-
valence molecule. It is inspired by the work of Malrieu and
co-workers,23 who used this technique on magnetic systems.
All calculations have been performed on a benchmark molecule,
which is a mixed-valence dimer of ruthenium that is closely
related to the Creutz-Taube molecule, the [HCN(NH3)4Ru-pz-
Ru(NH3)4NCH]5+ molecule, where pz) pyrazine. We have
analyzed the vertical spectrum of this molecule and have shown
that two bands of configurations play a crucial role in the lowest
part of the spectrum: the d11 and d10π* bands with respectively
one and two holes in the d orbitals. An ab initio calculation is
first performed, and results are projected using Bloch’s effective
Hamiltonian technique in a model space spanned by a d orbital
localized on RuA, the lowestπ* orbital of the pyrazine, and
another d orbital localized on RuB. This effective matrix is
modeled by parameters whose physical meaning is easy to
analyze. Thirty-three states of this spectrum can be well
reproduced with two parameters:U, the energy gap between
the two previous bands, andt, the transfer integral between the
dπ orbitals that overlap with theπ system of the pyrazine and
the lowestπ* orbital of the pyrazine. This model can be refined
by the introduction of two more parameters: the exchange
integral J between the two mentioned orbitals and the direct
transfer integralt′ between the two metallic centers. Contrary
to what is expected, the d10π* band is the most stable one at
the CASSCF level, and the ground state has a weight of about
2/3 from this configuration. Dynamical correlation is introduced
by means of variational methods such as DDCI or perturbative
methods such as MS-CASPT2; the same form of the model
Hamiltonian is found, and the main effect of correlation is the
reduction of the energy gapU, which becomes almost zero.

The advantage of this method in calculating model parameters
is that there is not any a priori assumptions of the form of the

std) x1

N
∑
i)1

N

(∆i - ∆h )2 (18)
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model Hamiltonian, and we have demonstrated that we obtain
the same model Hamiltonian with several different choices of
model spaces. For example, for the studied molecule, one
expected a model with two parameters:t andU. To refine it,
one would add one parameter,t′, without necessarily including
J. Furthermore, we have shown the crucial effect of the
localization of the orbitals: a very small amount of mixing
between the orbitals has a considerable effect on the effective
parameters, whereas it has no effect on the eigenvalues of the
system. This must not be seen as a drawback of this technique
but as a weak point of model Hamiltonians. They are based on
the idea of local orbitals, which is a very practical mental
representation of the molecule but is ambiguous in practice. We
show that there is an angle of mixing close to the one obtained
with Boys’ procedure whereJ andt′ are almost zero. For other
angles, the variation inU andt is compensated for by variations
of J andt′. The conclusion is that the lower vertical excitation
spectrum of the [HCN(NH3)4Ru-pz-Ru(NH3)4NCH]5+ molecule
can be modeled by a two-parameter model Hamiltonian
expressed in the set of localized orbitals wheret′ andJ vanish.

Finally, the results were compared with the more traditional
method, where model parameters are extracted by least-squares
fitting. The results were consistent, but the method proposed
by this article provides more physical insight, especially
concerning the chemical analysis of the mixing of the orbitals
and of secondary effects. This method has been applied to
molecules with longer bridges and has permitted a check of
the transferability of the model parameters and an extraction of
parameters describing internal transfer in the bridge. These
results will be published in a forthcoming article.26

The models proposed in the 1980s were based on the idea
that the molecule could be divided into unitsstwo terminal units
on the two metallic centers and intermediate units on the
bridging ligand. Furthermore, all of the developments supposed
that the transfer integralt is small compared to the excitation
energyU. What results from this work is that a two-parameter
model is completely valid for the description of such systems
but that in this special molecule the assumption that|t/U| , 1
that was used to develop the perturbative estimation of eq 1 is
not valid. However, this molecule is really a pathological case
for this approximation becauseU is almost zero, the hole
hopping without energy cost between the metallic centers and
the bridge. Furthermore, the two-band Hubbard Hamiltonian
of eq 2 is completely justified by this work and even in a more
generalized form, namely, including all of the occupied d orbitals
of ruthenium.

The parameters that we have obtained compare well to
parameters that were fit from experiment:19-21 our value oft is
slightly larger than the values proposed in the Introduction by
1000-2000 cm-1, which is a reasonable discrepancy. The value
of U for the monomer will be discussed in the forthcoming
article, and the value ofU for the binuclear molecule of 3500
cm-1 is compatible with this work, where we have shown that
this parameter is very sensible for the degree of correlation
included in the ab initio calculation; at least the experimental
value falls between the DDCI3 and CASPT2 values.

A key result is that the fundamentals of a simple modeling
of a bridged mixed-valence compound in the tight-binding
approximation with a transfer integral between nearest neighbors
and an energy gap are validated by this work.
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